Classical molecular dynamics and metadynamics simulations decipher the mechanism of CBP30 selectively inhibiting CBP/p300 bromodomains

Organic & Biomolecular Chemistry(2018)

引用 18|浏览15
暂无评分
摘要
The selective modulation of individual bromodomains (BDs) by small molecules represents an important strategy for the treatment of various cancers, considering that the BD-containing proteins share common BD structures and distinct pharmacological functions. Small molecule inhibitors targeting BDs outside of the bromodomain and extraterminal domain (BET, including BRD2-4 and BRDT) family are particularly lacking. CBP30 exhibited excellent selectivity for the transcriptional coactivators CBP (CREB binding protein) and p300 bromodomains, providing a new opportunity for designing selective non-BET inhibitors. Here, we performed classical molecular dynamics (cMD) and metadynamics simulations to reveal the selective mechanism of CBP30 binding with CBP/p300 and BRD4-BD1/BD2 bromodomains. The cMD simulations combined with binding free energy calculations were performed to compare the overall features of CBP30 binding with CBP/p300 and BRD4-BD1/BD2 bromodomains. Arg1173/1137, as the unique residue for CBP/p300, was responsible for the selective binding to CBP30 via cation- and hydrogen bond interactions. Metadynamics simulation, together with unbinding free energy profiles, suggested that the dissociation pathways of CBP30 from CBP/p300 and BRD4-BD1/BD2 bromodomains were different, with the unbinding of the former being more difficult. These findings will be helpful for novel CBP/p300-inhibitor design and rational structural modification of existing inhibitors to increase their selectivity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要