Time Domain Simulations of Single Molecule Raman Scattering.

JOURNAL OF PHYSICAL CHEMISTRY A(2018)

引用 10|浏览38
暂无评分
摘要
Nonequilibrium chemical phenomena are known to play an important role in single molecule microscopy and spectroscopy. Herein, we explore these effects through ab initio molecular dynamics (AIMD)-based Raman spectral simulations. We target an isolated aromatic thiol (thiobenzonitrile, TBN) as a prototypical molecular system. We first show that the essential features contained in the ensemble-averaged Raman spectrum of TBN can be reproduced by averaging over 18 short AIMD trajectories spanning a total simulation time of similar to 60 ps. This involved more than 90 000 polarizability calculations at the B3LYP/def2-TZVP level of theory. We then illustrate that the short trajectories (similar to 3.3 ps total simulation time), where the accessible phase space is not fully sampled, provide a starting point for understanding key features that are often observed in measurements targeting single molecules. Our results suggest that a complete understanding of single molecule Raman scattering needs to account for molecular conformational flexibility and nonequilibrium chemical phenomena in addition to local optical fields and modified selection rules. The former effects are well-captured using the described AIMD-based single molecule Raman spectral simulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要