Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self-Compensation and Mn Alloying.

SMALL(2018)

引用 140|浏览14
暂无评分
摘要
SnTe is known as an eco-friendly analogue of PbTe without toxic elements. However, the application potentials of pure SnTe are limited because of its high hole carrier concentration derived from intrinsic Sn vacancies, which lead to a high electrical thermal conductivity and low Seebeck coefficient. In this study, Sn self-compensation and Mn alloying could significantly improve the Seebeck coefficients in the whole temperature range through simultaneous carrier concentration optimization and band engineering, thereby leading to a large improvement of the power factors. Combining precipitates and atomic-scale interstitials due to Mn alloying with dense dislocations induced by long time annealing, the lattice thermal conductivity is drastically reduced. As a result, an enhanced figure of merit (ZT) of 1.35 is achieved for the composition of Sn0.94Mn0.09Te at 873 K and the ZT(ave) from 300 to 873 K is boosted to 0.78, which is of great significance for practical application. Hitherto, the ZT(max) and ZT(ave) of this work are the highest values among all single-element-doped SnTe systems.
更多
查看译文
关键词
band convergence,dislocations,interstitials,self-compensation,SnTe
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要