Side-Chain Moieties From The N-Terminal Region Of A Beta Are Involved In An Oligomer-Stabilizing Network Of Interactions

PLOS ONE(2018)

引用 16|浏览8
暂无评分
摘要
Oligomeric forms of the A beta peptide represent the most probable neurotoxic agent in Alzheimer's disease. The dynamic and heterogeneous character of these oligomers makes their structural characterization by classic methods difficult. Native mass spectrometry, when supported by additional gas phase techniques, like ion mobility separation and hydrogen-deuterium exchange (IM-HDX-MS), enable analysis of different oligomers coexisting in the sample and may provide species-specific structural information for each oligomeric form populated in the gas phase. Here, we have combined these three techniques to obtain insight into the structural properties of oligomers of A beta 1-40 and two variants with scrambled sequences. Gas-phase HDX-MS revealed a sequence-specific engagement of the side-chains of residues located at the N-terminal part of the peptide in a network of oligomer-stabilizing interactions. Oligomer-specific interactions were no longer observed in the case of the fully scrambled sequence. Also, the ability to form alternative structures, observed for WT A beta peptide, was lost upon scrambling. Our data underscore a role for the N-terminal residues in shaping the equilibria of oligomeric forms. Although the peptide lacking the N-terminal 1-16 residues (p3 peptide) is thought to be benign, the role of the N-terminus has not been sufficiently characterized yet. We speculate that the interaction networks revealed here may be crucial for enabling structural transitions necessary to obtain mature parallel cross-beta structures from smaller antiparallel oligomers. We provide a hypothetical molecular model of the trajectory that allows a gradual conversion from antiparallel to parallel oligomers without decomposition of oligomers. Oligomer-defining interactions involving the A beta peptide N-terminus may be important in production of the neurotoxic forms and thus should not be neglected.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要