High-performance asymmetric supercapacitor based on hierarchical nanocomposites of polyaniline nanoarrays on graphene oxide and its derived N-doped carbon nanoarrays grown on graphene sheets.

Journal of Colloid and Interface Science(2018)

引用 46|浏览13
暂无评分
摘要
Activated carbon (AC), as a material for asymmetric supercapacitor (ASC), is the most widely used as negative electrode. However, AC has some electrode kinetic problems which are corresponded to inner-pore ion transport that restrict the maximum specific energy and power that can be attained in an energy storage system. Therefore, it is an important topic for researchers to extend the carbonaceous material with qualified structure for negative electrode supercapacitor. In this work, novel promoted ASC have been fabricated using nanoarrays of polyaniline grown on graphene oxide sheets (PANI-GO) as positive electrode and also, carbonized nitrogen-doped carbon nanoarrays grown on the surface of graphene (CPANI-G) as negative electrode. The porous structure of the as-synthesized CPANI-G can enlarge the specific surface area and progress ion transport into the interior of the electrode materials. From the other point of view, nitrogen doping can impressively improve the wettability of the carbon surface in the electrolyte and upgrade the specific capacitance by a pseudocapacitive effect. Because of the high specific capacitance and distinguished rate performance of PANI-GO and CPANI-G and moreover, the synergistic effects of the two electrodes with the optimum potential window, the ASC display excellent electrochemical performances. In comparison with the symmetric cell based on PANI-GO (40 Wh kg−1), the fabricated PANI-GO//CPANI-G ASC exhibits a remarkably enhanced maximum energy density of 52 Wh kg−1. Furthermore, ASC electrode exhibits excellent cycling durability, with 90.3% specific capacitance preserving even after 5000 cycles. These admirable results show great possibilities in developing energy storage devices with high energy and power densities for practical applications.
更多
查看译文
关键词
Graphene,Polyaniline,Nitrogen–doped carbon,Asymmetric supercapacitors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要