Porous Gold Nanoparticle-Decorated Nanoreactors Prepared from Smartly Designed Functional Polystyrene-block-Poly(d,l-Lactide) Diblock Copolymers: Toward Efficient Systems for Catalytic Cascade Reaction Processes.

ACS applied materials & interfaces(2017)

引用 23|浏览3
暂无评分
摘要
Original porous catalytic supports can be engineered via an effective and straightforward synthetic route to polystyrene-block-poly(d,l-lactide) diblock copolymer precursors displaying an acid-cleavable acetal junction between both blocks. To this purpose, we synthesized an acetal-containing heterodifunctional initiator, thus enabling to combine two different polymerization methods, i.e., first atom transfer radical polymerization (ATRP) of styrene, and then ring-opening polymerization (ROP) of d,l-lactide. Thanks to the labile nature of the acetal junction, oriented porous frameworks could be obtained upon trifluoroacetic acid-mediated cleavage of the latter, after orientation of the block copolymer nanodomains by solvent vapor annealing. The resulting porous materials bearing a reactive aldehyde function at the pore surface allowed for further chemical modification via reductive amination with amino-containing compounds, such as tetraethylenepentamine, thus leading to amine-functionalized porous polystyrene. In situ generated gold nanoparticles could then be immobilized within such functionalized porous nanoreactors, and these hybrid materials could find interesting applications in heterogeneous supported catalysis. In this regard, model catalytic reactions, including C-C homocoupling of benzeneboronic acid derivatives, hydride-mediated reduction of nitroaromatic compounds, and especially unprecedented "one-pot" cascade reactions consisting of the latter consecutive reactions from 3-nitrobenzeneboronic acid, were successfully monitored by different chromatographic and spectroscopic techniques.
更多
查看译文
关键词
acetal,boronic acid C−C homocoupling,cascade reactions,diblock copolymers,functionalization,gold nanoparticles,nitroaromatic reduction,porous catalytic supports
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要