Thiaminase I provides a growth advantage by salvaging precursors from environmental thiamin and its analogs in .

APPLIED AND ENVIRONMENTAL MICROBIOLOGY(2018)

引用 6|浏览9
暂无评分
摘要
Thiamine is essential to life, as it serves as a cofactor for enzymes involved in critical carbon transformations. Many bacteria can synthesize thiamine, while thiamine auxotrophs must obtain it or its precursors from the environment. Thiaminases degrade thiamine by catalyzing the base-exchange substitution of thiazole with a nucleophile, and thiaminase I specifically has been implicated in thiamine deficiency syndromes in animals. The biological role of this secreted enzyme has been a long-standing mystery. We used the thiaminase I-producing soil bacterium Burkholderia thailandensis as a model to ascertain its function. First, we generated thiamine auxotrophs, which are still able to use exogenous precursors (thiazole and hydroxymethyl pyrimidine), to synthesize thiamine. We found that thiaminase I extended the survival of these strains, when grown in defined media where thiamine was serially diluted out, compared to isogenic strains that could not produce thiaminase I. Thiamine auxotrophs grew better on thiamine precursors than thiamine itself, suggesting thiaminase I functions to convert thiamine to useful precursors. Furthermore, our findings demonstrate that thiaminase I cleaves phosphorylated thiamine and toxic analogs, which releases precursors that can then be used for thiamine synthesis. This study establishes a biological role for this perplexing enzyme and provides additional insight into the complicated nature of thiamine metabolism and how individual bacteria may manipulate the availability of a vital nutrient in the environment. IMPORTANCE The function of thiaminase I has remained a long-standing, unsolved mystery. The enzyme is only known to be produced by a small subset of microorganisms, although thiaminase I activity has been associated with numerous plants and animals, and is implicated in thiamine deficiencies brought on by consumption of organisms containing this enzyme. Genomic and biochemical analyses have shed light on potential roles for the enzyme. Using the genetically amenable thiaminase I-producing soil bacterium Burkholderia thailandensis, we were able to demonstrate that thiaminase I helps salvage precursors from thiamine derivatives in the environment and degrades thiamine to its precursors, which are preferentially used by B. thailandensis auxotrophs. Our study establishes a biological role for this perplexing enzyme and provides insight into the complicated nature of thiamine metabolism. It also establishes B. thailandensis as a robust model system for studying thiamine metabolism.
更多
查看译文
关键词
Burkholderia thailandensis,HMP,thiC,thiG,thiaminase I,thiamine,thiazole
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要