Efficient Near-Infrared Electroluminescence at 840 nm with "Metal-Free" Small-Molecule:Polymer Blends

ADVANCED MATERIALS(2018)

引用 54|浏览14
暂无评分
摘要
Due to the so-called energy-gap law and aggregation quenching, the efficiency of organic light-emitting diodes (OLEDs) emitting above 800 nm is significantly lower than that of visible ones. Successful exploitation of triplet emission in phosphorescent materials containing heavy metals has been reported, with OLEDs achieving remarkable external quantum efficiencies (EQEs) up to 3.8% (peak wavelength > 800 nm). For OLEDs incorporating fluorescent materials free from heavy or toxic metals, however, we are not aware of any report of EQEs over 1% (again for emission peaking at wavelengths > 800 nm), even for devices leveraging thermally activated delayed fluorescence (TADF). Here, the development of polymer light-emitting diodes (PLEDs) peaking at 840 nm and exhibiting unprecedented EQEs (in excess of 1.15%) and turn-on voltages as low as 1.7 V is reported. These incorporate a novel triazolobenzothiadiazole-based emitter and a novel indacenodithiophene-based transport polymer matrix, affording excellent spectral and transport properties. To the best of knowledge, such values are the best ever reported for electroluminescence at 840 nm with a purely organic and solution-processed active layer, not leveraging triplet-assisted emission.
更多
查看译文
关键词
blends,indacenodithiophene,near-infrared,organic light-emitting diodes (OLEDs),triazolobenzothiadiazole
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要