Nonvariational mechanism of front propagation: Theory and experiments.

PHYSICAL REVIEW E(2017)

引用 13|浏览2
暂无评分
摘要
Multistable systems exhibit a rich front dynamics between equilibria. In one-dimensional scalar gradient systems, the spread of the fronts is proportional to the energy difference between equilibria. Fronts spreading proportionally to the energetic difference between equilibria is a characteristic of one-dimensional scalar gradient systems. Based on a simple nonvariational bistable model, we show analytically and numerically that the direction and speed of front propagation is led by nonvariational dynamics. We provide experimental evidence of nonvariational front propagation between different molecular orientations in a quasi-one-dimensional liquid-crystal light valve subjected to optical feedback. Free diffraction length allows us to control the variational or nonvariational nature of this system. Numerical simulations of the phenomenological model have quite good agreement with experimental observations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要