StaPLs: versatile genetically encoded modules for engineering drug-inducible proteins

NATURE METHODS(2018)

引用 37|浏览8
暂无评分
摘要
Robust approaches for chemogenetic control of protein function would have many biological applications. We developed stabilizable polypeptide linkages (StaPLs) based on hepatitis C virus protease. StaPLs undergo autoproteolysis to cleave proteins by default, whereas protease inhibitors prevent cleavage and preserve protein function. We created StaPLs responsive to different clinically approved drugs to bidirectionally control transcription with zinc-finger-based effectors, and used StaPLs to create single-chain, drug-stabilizable variants of CRISPR–Cas9 and caspase-9.
更多
查看译文
关键词
Chemical tools,Proteases,Protein design,Synthetic biology,Life Sciences,general,Biological Techniques,Biological Microscopy,Biomedical Engineering/Biotechnology,Bioinformatics,Proteomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要