Is it worth expending energy to convert biliverdin into bilirubin?

Free Radical Biology and Medicine(2018)

引用 22|浏览22
暂无评分
摘要
Bilirubin (BR) is generated by the reduction of biliverdin (BV), a metabolite that results from the catalytic degradation of heme by the isoforms of heme oxygenase (HO). BV is nontoxic and water-soluble but BR is potentially toxic and lipophilic. Therefore, a further metabolic step is required for BR before excretion is possible. The reductive conversion of BV to BR costs energy and is evolutionarily conserved in human physiology. There must be a compelling reason for this apparently nonsensical evolutionary conservation. In addition to the differences between BR and BV—such as water solubility, antioxidant activity, and participation as a receptor ligand—in the present study, we focused on the chemistry of the two metabolites with regard to an electrophilic functional group called a Michael reaction acceptor (MRA). Our data reveal that the BR reacts with thiol compounds forming adducts, whereas no reaction occurs with BV. Furthermore, the binding of biotin-tagged BR to Kelch-like ECH-associated protein 1 (KEAP1)—a biological electrophile sensor—was prevented by pretreatment with BR or a thiol compound, but was not by pretreatment with BV. In cells, BR could bind to KEAP1 to release and activate nuclear factor-erythroid 2 (NF-E2) p45-related factor 2, a cytoprotective transcription factor, leading to the induction of HO-1. These findings may provide a physiological rationale for the energy-consuming conversion of BV to BR.
更多
查看译文
关键词
Bilirubin,Biliverdin,Michael reaction acceptor,Electrophile,Kelch-like ECH-associated protein 1,Nuclear factor-erythroid 2 (NF-E2) p45-related factor 2,Biliverdin reductase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要