Targeting The Potent Beclin 1-Uvrag Coiled-Coil Interaction With Designed Peptides Enhances Autophagy And Endolysosomal Trafficking

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA(2018)

引用 50|浏览28
暂无评分
摘要
The Beclin 1-Vps34 complex, known as '' mammalian class III PI3K,'' plays essential roles in membrane-mediated transport processes including autophagy and endosomal trafficking. Beclin 1 acts as a scaffolding molecule for the complex and readily transits from its metastable homodimeric state to interact with key modulators such as Atg14L or UVRAG and form functionally distinct Atg14L/UVRAG-containing Beclin 1-Vps34 subcomplexes. The Beclin 1-Atg14L/UVRAG interaction relies critically on their coiled-coil domains, but the molecular mechanism remains poorly understood. We determined the crystal structure of Beclin 1-UVRAG coiled-coil complex and identified a strengthened interface with both hydrophobic pairings and electrostatically complementary interactions. This structure explains why the Beclin 1-UVRAG interaction is more potent than the metastable Beclin 1 homodimer. Potent Beclin 1-UVRAG interaction is functionally significant because it renders UVRAG more competitive than Atg14L in Beclin 1 binding and is critical for promoting endolysosomal trafficking. UVRAG coiled-coil mutants with weakened Beclin 1 binding do not outcompete Atg14L and fail to promote endolysosomal degradation of the EGF receptor (EGFR). We designed all-hydrocarbon stapled peptides that specifically targeted the C-terminal part of the Beclin 1 coiled-coil domain to interfere with its homodimerization. One such peptide reduced Beclin 1 self-association, promoted Beclin 1-Atg14L/UVRAG interaction, increased autophagic flux, and enhanced EGFR degradation. Our results demonstrate that the targeting Beclin 1 coiled-coil domain with designed peptides to induce the redistribution of Beclin 1 among its self-associated form or Atg14L/UVRAG-containing complexes enhances both autophagy and endolysosomal trafficking.
更多
查看译文
关键词
Beclin 1, UVRAG, Atg14L, autophagy, endolysosomal trafficking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要