From 2d To 3d: Critical Casimir Interactions And Phase Behavior Of Colloidal Hard Spheres In A Near-Critical Solvent

JOURNAL OF CHEMICAL PHYSICS(2017)

引用 7|浏览11
暂无评分
摘要
Colloids dispersed in a binary solvent mixture experience long-ranged solvent-mediated interactions (critical Casimir forces) upon approaching the critical demixing point of the solvent mixture. The range of the interaction is set by the bulk correlation length of the solvent mixture, which diverges upon approaching the critical point. This presents a great opportunity to realize the reversible self-assembly of colloids by tuning the proximity to the critical point of the solvent. Here, we develop a rejection-free geometric cluster algorithm to study the full ternary mixture of colloidal hard spheres suspended in an explicit three-dimensional lattice model for the solvent mixture using extensive Monte Carlo simulations. The phase diagram displays stable colloidal gas, liquid, and crystal phases, as well as broad gas-liquid and gas-crystal phase coexistence, and pronounced fractionation of the solvent in the coexisting colloid phases. The topology of the phase diagram in our three-dimensional study shows striking resemblance to that of our previous studies carried out in two dimensions. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要