Spectrin is a mechanoresponsive protein shaping fusogenic synapse architecture during myoblast fusion

NATURE CELL BIOLOGY(2018)

引用 40|浏览10
暂无评分
摘要
Spectrin is a membrane skeletal protein best known for its structural role in maintaining cell shape and protecting cells from mechanical damage. Here, we report that α/β H -spectrin (β H is also called karst) dynamically accumulates and dissolves at the fusogenic synapse between fusing Drosophila muscle cells, where an attacking fusion partner invades its receiving partner with actin-propelled protrusions to promote cell fusion. Using genetics, cell biology, biophysics and mathematical modelling, we demonstrate that spectrin exhibits a mechanosensitive accumulation in response to shear deformation, which is highly elevated at the fusogenic synapse. The transiently accumulated spectrin network functions as a cellular fence to restrict the diffusion of cell-adhesion molecules and a cellular sieve to constrict the invasive protrusions, thereby increasing the mechanical tension of the fusogenic synapse to promote cell membrane fusion. Our study reveals a function of spectrin as a mechanoresponsive protein and has general implications for understanding spectrin function in dynamic cellular processes.
更多
查看译文
关键词
Cytoskeleton,Drosophila,Mechanotransduction,Membrane fusion,Life Sciences,general,Cell Biology,Cancer Research,Developmental Biology,Stem Cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要