GL-V9 induced upregulation and mitochondrial localization of NAG-1 associates with ROS generation and cell death in hepatocellular carcinoma cells.

Free Radical Biology and Medicine(2017)

引用 19|浏览9
暂无评分
摘要
We have previously reported that a newly synthesized compound, GL-V9 could induce mitochondria-mediated apoptosis in HepG2 cells. However, the underlying mechanisms have not been fully understood yet. In current study, we further showed that GL-V9 exhibited significant inhibitory effect on growth of several hepatocellular carcinoma cell lines. Moreover, GL-V9-induced growth inhibition was coincident with the strong upregulation of nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), a TGFβ superfamily member, which has been linked with tumor suppression. Further analysis uncovered that GL-V9-activated p38 MAPK pathway contributed to enhancement of NAG-1 mRNA stability. Interestingly, we observed that the intracellular NAG-1 protein induced by GL-V9 could, at least in part, localize in mitochondria where it might affect protein expression, thereby resulting in dissipation of mitochondria membrane potential (MMP) and accumulation of mitochondrial superoxide, eventually facilitating to apoptosis events. Silence of NAG-1 could attenuate mitochondria related apoptosis caused by GL-V9. Moreover, GL-V9 suppressed tumor growth in xenograft model accompanied with upregulation of NAG-1 in tumor tissues. Collectively, these data demonstrated that NAG-1 could play an important role in mitochondria apoptosis triggered by GL-V9, thus providing novel mechanistic explanations and potential target for using GL-V9 as a chemotherapeutic agent against human hepatocellular carcinoma.
更多
查看译文
关键词
GL-V9,NAG-1,Mitochondria,ROS,MMP,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要