Norepinephrine and thyroxine are predictors of fat mass gain in humans with cold-induced brown adipose tissue activation.

JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM(2018)

引用 10|浏览7
暂无评分
摘要
Context: In healthy adults with detectable cold-induced brown adipose tissue activation (CIBA), the relationships between sympathetic nervous system (SNS) or thyroid activity during energy balance (EBL) with CIBA and body composition change are undetermined. Objective: To investigate the relationships between CIBA and thermoneutral catecholamines and thyroid hormones measured during EBL and to determine if CIBA, catecholamines, or thyroid hormones predict body composition changes. Design, Setting, Participants, and Interventions: Twelve healthy volunteers (seven male and five female) with positive CIBA [>2 standardized uptake value (g/mL)] had 24-hour energy expenditure (24hEE) assessed during EBL via whole-room indirect calorimetry while residing on a clinical research unit. Positron emission tomography/computed tomography scans were performed after exposure to 16 degrees C for 2 hours to quantify CIBA. Main Outcome Measures: CIBA, 24hEE during EBL, and thermoneutrality with concomitant measurement of urinary catecholamines and plasma free T3 and free T4. Body composition at baseline and 6 months by dual-energy X-ray absorptiometry. Results: Lower urinary norepinephrine and free T4 were associated with higher CIBA (r = -0.65, P = 0.03; and r = -0.75, P < 0.01, respectively), but CIBA was not associated with 24hEE at thermoneutrality (P = 0.77). Lower CIBA (beta = -3.5 kg/standardized uptake value; P < 0.01) predicted fat mass gain, whereas higher urinary norepinephrine and free T4 predicted future fat mass gain at 6 months (beta = 3.0 kg per twofold difference in norepinephrine, P = 0.03; and beta = 1.2 kg per 0.1-ng/dL difference in free T4, P = 0.03, respectively). Conclusion: Lower SNS and free thyroid measurements at baseline indicate a greater capacity for CIBA, which may be predictive against fat mass gain.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要