A nanocomposite optosensor containing carboxylic functionalized multiwall carbon nanotubes and quantum dots incorporated into a molecularly imprinted polymer for highly selective and sensitive detection of ciprofloxacin.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy(2018)

引用 58|浏览7
暂无评分
摘要
A nanocomposite optosensor consisting of carboxylic acid functionalized multiwall carbon nanotubes and CdTe quantum dots embedded inside a molecularly imprinted polymer (COOH@MWCNT-MIP-QDs) was developed for trace ciprofloxacin detection. The COOH@MWCNT-MIP-QDs were synthesized through a facile sol-gel process using ciprofloxacin as a template molecule, 3-aminopropylethoxysilane as a functional monomer and tetraethoxysilane as a cross-linker at a molar ratio of 1:8:20. The synthesized nanocomposite optosensor had high sensitivity, excellent specificity and high binding affinity to ciprofloxacin. Under optimal conditions, the fluorescence intensity of the optosensor decreased in a linear fashion with the concentration of ciprofloxacin and two linear dynamic ranges were obtained, 0.10-1.0 μg L-1 and 1.0-100.0 μg L-1 with a very low limit of detection of 0.066 μg L-1. The imprinting factors of the two linear range were 17.67 and 4.28, respectively. The developed nanocomposite fluorescence probe was applied towards the determination of ciprofloxacin levels in chicken muscle and milk samples with satisfactory recoveries being obtained in the range of 82.6 to 98.4%. The results were also in good agreement with a HPLC method which indicates that the optosensor can be used as a sensitive, selective and rapid method to detect ciprofloxacin in chicken and milk samples.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要