Monolithic Flexible Vertical GaN Light-Emitting Diodes for a Transparent Wireless Brain Optical Stimulator.

ADVANCED MATERIALS(2018)

引用 99|浏览19
暂无评分
摘要
Flexible inorganic-based micro light-emitting diodes (mu LEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral mu LEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light-extraction efficiency on plastics. Here, high-performance flexible vertical GaN light-emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical LEDs (f-VLEDs) with high optical power (30 mWmm(-2)), long lifetime (approximate to 12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light-emitting system on the human skin is successfully realized by transferring the electrical power f-VLED. Finally, the high-density GaN f-VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain.
更多
查看译文
关键词
bioelectronics,flexible GaN vertical light-emitting diodes,light-emitting diodes,transparent micro-light-emtting-diodes,wireless power transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要