Direct Evidence of Lithium Ion Migration in Resistive Switching of Lithium Cobalt Oxide Nanobatteries.

SMALL(2018)

引用 22|浏览70
暂无评分
摘要
Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two-terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the LixCoO2 layer. These observations are very well correlated with the observed insulator-to-metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling - much further than the present cycling life of usual lithium-ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.
更多
查看译文
关键词
lithium-ion batteries,nonvolatile memories,oxides,resistive switching,thin films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要