[Effects of biochar and sheep manure on rhizospheric soil microbial community in continuous ratooning tea orchards].

Ying yong sheng tai xue bao = The journal of applied ecology(2018)

引用 25|浏览13
暂无评分
摘要
Long-term continuous ratooning of tea could lead to serious soil acidification, nutritional imbalance, and the deterioration of the rhizosphere micro-ecological environment. Understanding the effects of biochar and sheep manure on the growth of tea plants and the rhizosphere microbial community structure and function would provide theoretical basis to improve the soil micro-ecological environment of continuous ratooning tea orchards. Biolog technology combined with phospholipid fatty acid (PLFA) approaches were employed to quantify the effects of biochar (40 t·hm-2) and sheep manure on the growth of 20 years continuous ratooning tea plants, soil chemical properties, and the soil microbial community structure and function. The results showed that after one year treatment, biochar and sheep manure both improved soil pH and nutrition, and significantly enhanced tea production. Compared with the routine fertilizer application (CK), the biochar and sheep manure treatments significantly increased the carbon metabolic activity (AWCD) and microorganism diversity in the rhizosphere soils, and increased the relative utilization of the carbon sources such as amines, carbohydrates, and polymers. The total PLFA concentrations in the biochar and sheep manure treatments were significantly increased by 20.9% and 47.5% than that in the routine fertilizers application. In addition, sheep manure treatment significantly decreased the saturated/monosaturated fatty acids In conclusion, biochar and sheep manure could alleviate soil acidification, enhance soil nutrition and the growth of tea plants. Both management strategies could increase the soil microbial activity and biomass, enhance the diversity, and improve the microbial community structure, which could be taken as effective measures to regulate the rhizosphere micro-environment of tea plants.
更多
查看译文
关键词
tea plant,phospholipid fatty acid,ratooning continuous cropping,microbial utilization rate of carbon source,soil microbial community
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要