Cornichon Sorting And Regulation Of Glr Channels Underlie Pollen Tube Ca2+ Homeostasis

SCIENCE(2018)

引用 135|浏览32
暂无评分
摘要
Compared to animals, evolution of plant calcium (Ca2+) physiology has led to a loss of proteins for influx and small ligand-operated control of cytosolic Ca2+, leaving many Ca2+ mechanisms unaccounted for. Here, we show a mechanism for sorting and activation of glutamate receptorlike channels (GLRs) by CORNICHON HOMOLOG (CNIH) proteins. Single mutants of pollenexpressed Arabidopsis thaliana GLRs (AtGLRs) showed growth and Ca2+ flux phenotypes expected for plasma membrane Ca2+ channels. However, higher-order mutants of AtGLR3.3 revealed phenotypes contradicting this assumption. These discrepancies could be explained by subcellular AtGLR localization, and we explored the implication of AtCNIHs in this sorting. We found that AtGLRs interact with AtCNIH pairs, yielding specific intracellular localizations. AtCNIHs further trigger AtGLR activity in mammalian cells without any ligand. These results reveal a regulatory mechanism underlying Ca2+ homeostasis by sorting and activation of AtGLRs by AtCNIHs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要