Complex formation between the vasopressin 1b receptor, β-arrestin-2, and the μ-opioid receptor underlies morphine tolerance

NATURE NEUROSCIENCE(2018)

引用 34|浏览23
暂无评分
摘要
Chronic morphine exposure upregulates adenylate cyclase signaling and reduces analgesic efficacy, a condition known as opioid tolerance. Nonopioid neurotransmitters can enhance morphine tolerance, but the mechanism for this is poorly understood. We show that morphine tolerance was delayed in mice lacking vasopressin 1b receptors (V1bRs) or after administration of V1bR antagonist into the rostral ventromedial medulla, where transcripts for V1bRs and μ-opioid receptors are co-localized. Vasopressin increased morphine-binding affinity in cells expressing both V1bR and μ-opioid receptors. Complex formation among V1bR, β-arrestin-2, and μ-opioid receptor resulted in vasopressin-mediated upregulation of ERK phosphorylation and adenylate cyclase sensitization. A leucine-rich segment in the V1bR C-terminus was necessary for the association with β-arrestin-2. Deletion of this leucine-rich segment increased morphine analgesia and reduced vasopressin-mediated adenylate cyclase sensitization. These findings indicate that inhibition of μ-opioid-receptor-associated V1bR provides an approach for enhancing morphine analgesia without increasing analgesic tolerance.
更多
查看译文
关键词
G protein-coupled receptors,Pain,Biomedicine,general,Neurosciences,Behavioral Sciences,Biological Techniques,Neurobiology,Animal Genetics and Genomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要