Importance of a moderate plate-to-bone distance for the functioning of the far cortical locking system.

Medical engineering & physics(2018)

引用 6|浏览11
暂无评分
摘要
The far cortical locking (FCL) system, a novel bridge-plating technique, aims to deliver controlled and symmetric interfragmentary motion for a potential uniform callus distribution. However, clinical data for the practical use of this system are limited. The current study investigated the biomechanical effect of a locking plate/far cortical locking construct on a simulated comminuted diaphyseal fracture of the synthetic bones at different distance between the plate and the bone. Biomechanical in vitro experiments were performed using composite sawbones as bone models. A 10-mm osteotomy gap was created and bridged with FCL constructs to determine the construct stiffness, strength, and interfragmentary movement under axial compression, which comprised one of three methods: locking plates applied flush to bone, at 2 mm, or at 4 mm from the bone. The plate applied flush to the bone exhibited higher stiffness than those at 2 mm and 4 mm plate elevation. A homogeneous interfragmentary motion at the near and far cortices was observed for the plate at 2 mm, whereas a relatively large movement was observed at the far cortex for the plate applied at 4 mm. A plate-to-bone distance of 2 mm had the advantages of reducing axial stiffness and providing nearly parallel interfragmentary motion. The plate flush to the bone prohibits the dynamic function of the far cortical locking mechanism, and the 4-mm offset was too unstable for fracture healing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要