Multi-Functional Electrospun Antibacterial Core-Shell Nanofibrous Membranes for Prolonged Prevention of Post-Surgical Tendon Adhesion and Inflammation.

Acta Biomaterialia(2018)

引用 119|浏览12
暂无评分
摘要
The possibility of endowing an electrospun anti-adhesive barrier membrane with multi-functionality, such as lubrication, prevention of fibroblast attachment and anti-infection and anti-inflammation properties, is highly desirable for the management of post-surgical tendon adhesion. To this end, we fabricated core-shell nanofibrous membranes (CSNMs) with embedded silver nanoparticles (Ag NPs) in the poly(ethylene glycol) (PEG)/poly(caprolactone) (PCL) shell and hyaluronic acid (HA)/ibuprofen in the core. HA imparted a lubrication effect for smooth tendon gliding and reduced fibroblast attachment, while Ag NPs and ibuprofen functioned as anti-infection and anti-inflammation agents, respectively. CSNMs with a PEG/PCL/Ag shell (PPA) and HA core containing 0% (H/PPA), 10% (HI10/PPA), 30% (HI30/PPA) and 50% (HI50/PPA) ibuprofen were fabricated through co-axial electrospinning and assessed through microscopic, spectroscopic, thermal, mechanical and drug release analyses. Considering nutrient passage through the barrier, the microporous CSNMs exerted the same barrier effect but drastically increased the mass transfer coefficients of bovine serum albumin compared with the commercial anti-adhesive membrane SurgiWrap®. Cell attachment/focal adhesion formation of fibroblasts revealed effective reduction of initial cell attachment on the CSNM surface with minimum cytotoxicity (except HI50/PPA). The anti-bacterial effect against both Gram-negative and Gram-positive bacteria was verified to be due to the Ag NPs in the membranes. In vivo studies using H/PPA and HI30/PPA CSNMs and SurgiWrap® in a rabbit flexor tendon rupture model demonstrated the improved efficacy of HI30/PPA CSNMs in reducing inflammation and tendon adhesion formation based on gross observation, histological analysis and functional assays. We conclude that HI30/PPA CSNMs can act as a multifunctional barrier membrane to prevent peritendinous adhesion after tendon surgery.
更多
查看译文
关键词
Core-shell nanofibers,Anti-adhesion,Hyaluronic acid,Silver nanoparticle,Ibuprofen,Electrospinning,Tendon adhesion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要