The adsorption of Cs + from wastewater using lithium-modified montmorillonite caged in calcium alginate beads.

Chemosphere(2018)

引用 40|浏览14
暂无评分
摘要
The increasing nuclear energy consumption has posed serious environmental concerns (e.g. nuclear leakage), and the removal of radionuclides such as cesium becomes an urgent issue to be solved currently. In this research, a novel non-toxic adsorbent lithium-modified montmorillonite clay encapsulated in calcium alginate microbeads (MCA/Li) was fabricated by using ion-exchange method and then used successfully in the remediation of cesium-contaminated wastewater. Analyses of scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the physicochemical properties of adsorbent MCA/Li, such as internal crystal structure, constituent elements, and functional groups. The effects of concentration ratios (sodium alginate/montmorillonite), solution pH, contacting time and initial Cs+ concentration on the adsorption behavior were carefully investigated via batch adsorption experiments. The adsorbent MCA/Li exhibited higher selectivity and removal efficiency towards Cs+ with the maximum adsorption capacity of 100.25 mg/g. In the kinetics study, the pseudo-first-order fitted the cesium adsorption data of MCA/Li better than the pseudo-second-order. The adsorption mechanism studies revealed the process followed the Langmuir isotherm model, which suggested that Cs+ adsorption onto MCA/Li is a monolayer homogeneous adsorption process. The research findings indicated this novel adsorbent MCA/Li demonstrated great potential in radioactive wastewater treatment due to its convenience in synthesis, high adsorption capacity, and low cost.
更多
查看译文
关键词
Cesium adsorption,Lithium-modified montmorillonite,Alginate,Microbeads
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要