Usaxs Analysis Of Concentration-Dependent Self-Assembling Of Polymer-Brush-Modified Nanoparticles In Ionic Liquid: [I] Concentrated-Brush Regime

JOURNAL OF CHEMICAL PHYSICS(2018)

引用 10|浏览4
暂无评分
摘要
Using ultra-small angle X-ray scattering (USAXS), we analyzed the higher-order structures of nanoparticles with a concentrated brush of an ionic liquid (IL)-type polymer (concentrated-polymer-brush-modified silica particle; PSiP) in an IL and the structure of the swollen shell layer of PSiP. Homogeneous mixtures of PSiP and IL were successfully prepared by the solvent-casting method involving the slow evaporation of a volatile solvent, which enabled a systematic study over an exceptionally wide range of compositions. Different diffraction patterns as a function of PSiP concentration were observed in the USAXS images of the mixtures. At suitably low PSiP concentrations, the USAXS intensity profile was analyzed using the Percus-Yevick model by matching the contrast between the shell layer and IL, and the swollen structure of the shell and "effective diameter" of the PSiP were evaluated. This result confirms that under sufficiently low pressures below and near the liquid/crystal-threshold concentration, the studied PSiP can be well described using the "hard sphere" model in colloidal science. Above the threshold concentration, the PSiP forms higher-order structures. The analysis of diffraction patterns revealed structural changes from disorder to random hexagonal-closed-packing and then face-centered-cubic as the PSiP concentration increased. These results are discussed in terms of thermodynamically stable "hard" and/or "semi-soft" colloidal crystals, wherein the swollen layer of the concentrated polymer brush and its structure play an important role. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要