Electrochemically modified dissolved organic matter accelerates the combining photodegradation and biodegradation of 17α-ethinylestradiol in natural aquatic environment.

Water Research(2018)

引用 50|浏览2
暂无评分
摘要
The photochemical conversion and microbial transformation of pollutants mediated by dissolved organic matter (DOM), including 17α-ethinylestradiol (EE2), are often accompanied in natural water. However, there are few studies to explore the connection and mechanism between the two processes. This research aims to investigate the mechanism of DOM after electrochemically modification mediated EE2 combining photodegradation and biodegradation in the environment and it want to explain the natural phenomena of DOM after electrochemical advanced treatment entering the water environment mediated EE2 natural degradation. The results showed that combining photodegradation with biodegradation rates of EE2 mediated by DOM and electrochemically modified DOM (E-DOM) were promoted obviously. The efficiency of EE2 biodegradation was shown to be strongly correlated with electron accepting capacity (EAC) of DOM. Electrochemical modification can increase the EAC of DOM leading to EE2 biodegradation accelerated, and it also can form more triplet-state DOM moieties to promote the EE2 photodegradation in irradiation conditions, due to the increasing of quinone-type structures in DOM. Moreover, cell polymeric secretion (CPS) secreted from the microorganism could be stimulated to an excited state by irradiation, and that also accelerated EE2 degradation. Photolysis combined with biochemical degradation yielded less toxic degradation products. This study shows that the emission of DOM in wastewater after electrochemical treatment could accelerate estrogen degradation and play a positive role on the pollutant transformation in the environment.
更多
查看译文
关键词
Electrochemical modification,Dissolved organic matter,17α-ethinylestradiol,Biodegradation,Photodegradation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要