Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous.

Cin-Ty A Lee,Hehe Jiang,Elli Ronay,Daniel Minisini, Jackson Stiles, Matthew Neal

Scientific reports(2018)

引用 60|浏览3
暂无评分
摘要
On greater than million year timescales, carbon in the ocean-atmosphere-biosphere system is controlled by geologic inputs of CO2 through volcanic and metamorphic degassing. High atmospheric CO2 and warm climates in the Cretaceous have been attributed to enhanced volcanic emissions of CO2 through more rapid spreading at mid-ocean ridges and, in particular, to a global flare-up in continental arc volcanism. Here, we show that global flare-ups in continental arc magmatism also enhance the global flux of nutrients into the ocean through production of windblown ash. We show that up to 75% of Si, Fe and P is leached from windblown ash during and shortly after deposition, with soluble Si, Fe and P inputs from ash alone in the Cretaceous being higher than the combined input of dust and rivers today. Ash-derived nutrient inputs may have increased the efficiency of biological productivity and organic carbon preservation in the Cretaceous, possibly explaining why the carbon isotopic signature of Cretaceous seawater was high. Variations in volcanic activity, particularly continental arcs, have the potential of profoundly altering carbon cycling at the Earth's surface by increasing inputs of CO2 and ash-borne nutrients, which together enhance biological productivity and burial of organic carbon, generating an abundance of hydrocarbon source rocks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要