Diffusion-Controlled Faradaic Charge Storage in High-Performance Solid Electrolyte-Gated Zinc Oxide Thin-Film Transistors.

ACS applied materials & interfaces(2018)

引用 48|浏览6
暂无评分
摘要
An electrochemical device capable of manifesting reversible charge storage at the interface of an active layer offers formidable advantages, such as low switching energy and long retention time, in realizing synaptic behavior for ultralow power neuromorphic systems. Contrary to a supercapacitor-based field-effect device that is prone to low memory retention due to fast discharge, a solid electrolyte-gated ZnO thin-film device exhibiting a battery-controlled charge storage mechanism via mobile charges at its interface with tantalum oxide is demonstrated. Analysis via cyclic voltammetry and chronoamperometry uniquely distinguishes the battery behavior of these devices, with an electromotive force generated due to polarization of charges strongly dependent on the scan rate of the applied voltage. The Faradaic-type diffusion-controlled charge storage mechanism exhibited by these devices is capable of delivering robust enhancement in the channel conductance and leads to a superior ON-OFF ratio of 10-10. The nonvolatile behavior of the interface charge storage and slow diffusion of ions is utilized in efficiently emulating spike timing-dependent plasticity (STDP) at similar time scales of biological synapses and unveils the possibility of STDP behavior using multiple in-plane gates that alleviate additional requirement of waveform-shaping circuits.
更多
查看译文
关键词
ionic diffusion,oxygen vacancies,synaptic memory,tantalum oxide,thin-film transistors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要