Copy number variation of functional RBMY1 is associated with sperm motility: an azoospermia factor-linked candidate for asthenozoospermia.

HUMAN REPRODUCTION(2017)

引用 31|浏览46
暂无评分
摘要
What is the influence of copy number variation (CNV) in functional RNA binding motif protein Y-linked family 1 (RBMY1) on spermatogenic phenotypes? The RBMY1 functional copy dosage is positively correlated with sperm motility, and dosage insufficiency is an independent risk factor for asthenozoospermia. RBMY1, a multi-copy gene expressed exclusively in the adult testis, is one of the most important candidates for male infertility in the azoospermia factor (AZF) region of the Y-chromosome. RBMY1 encodes an RNA-binding protein that serves as a pre-mRNA splicing regulator during spermatogenesis, and male mice deficient in Rbmy are sterile. A total of 3127 adult males were recruited from 2009 to 2016; of this group, the dosage of RBMY1 functional copy were investigated in 486 fertile males. In the remaining 2641 males with known spermatogenesis status, 1070 Y-chromosome haplogroup (Y-hg) O3(*) or O3e carriers without chromosomal aberration or known AZF structure mutations responsible for spermatogenic impairment, including 506 men with normozoospermia and 564 men with oligozoospermia or/and asthenozoospermia, were screened, and the RBMY1 functional copy dosage and copy conversion were determined to explore their associations with sperm phenotypes. The correlation between RBMY1 dosage and its mRNA level or RBMY1 protein level and the correlation between sperm RBMY1 level and motility were analysed in 15 testis tissue samples and eight semen samples. Ten additional semen samples were used to confirm the subcellular localization of RBMY1 in individual sperm. All the Han volunteers donating whole blood, semen and testis tissue were from southwest China. RBMY1 copy number, copy conversion, mRNA/protein amount and protein location in sperm were detected using the AccuCopy(A (R)) assay method, paralog ratio test, quantitative PCR, western blotting and immunofluorescence staining methods, respectively. This study identified Y-hg-independent CNV of functional RBMY1 in the enrolled population. A difference in the distribution of RBMY1 copy number was observed between the group with normal sperm motility and the group with asthenozoospermia. A positive correlation between the RBMY1 copy dosage and sperm motility was identified, and the males with fewer than six copies of RBMY1 showed an elevated risk for asthenozoospermia relative to those with six RBMY1 copies, the most common dosage in the population. The RBMY1 copy dosage was positively correlated with its mRNA and protein level in the testis. Sperm with high motility were found to carry more RBMY1 protein than those with relatively low motility. The RBMY1 protein was confirmed to predominantly localize in the neck and mid-piece region of sperm as well as the principal piece of the sperm tail. Our population study completes a chain of evidence suggesting that RBMY1 influences the susceptibility of males to asthenozoospermia by modulating sperm motility. High sequence similarity between the RBMY1 functional copies and a large number of pseudogenes potentially reduces the accuracy of the copy number detection. The mechanism underlying the CNV in RBMY1 is still unclear, and the effect of the structural variations in the RBMY1 copy cluster on the copy dosage of other protein-coding genes located in the region cannot be excluded, which may potentially bias our observations. Asthenozoospermia is a multi-factor complex disease with a limited number of proven susceptibility genes. This study identified a novel genomic candidate independently contributing to the condition, enriching our understanding of the role of AZF-linked genes in male reproduction. Our finding provides insight into the physiological and pathological characteristics of RBMY1 in terms of sperm motility, supplies persuasive evidence of the significance of RBMY1 copy number analysis in the clinical counselling of male infertility resulting from asthenozoospermia
更多
查看译文
关键词
RBMY1,azoospermia factor,copy number variation,copy conversion,Y-chromosome haplogroup,sperm motility,asthenozoospermia,male infertility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要