Experimental aspects of buoyancy correction in measuring reliable highpressure excess adsorption isotherms using the gravimetric method.

MEASUREMENT SCIENCE AND TECHNOLOGY(2017)

引用 19|浏览7
暂无评分
摘要
Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO2 and supercritical N-2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.
更多
查看译文
关键词
high-pressure adsorption isotherm,excess adsorption isotherm,gravimetric method,buoyancy correction,blank correction,RM 8852,ZSM-5
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要