Dysregulation of energy metabolism in multiple sclerosis measured in-vivo with diffusion-weighted spectroscopy

MULTIPLE SCLEROSIS JOURNAL(2016)

引用 17|浏览16
暂无评分
摘要
Objective: We employed diffusion-weighted magnetic resonance spectroscopy (DW-MRS), which allows to measure in vivo the diffusion properties of metabolites, to explore the functional neuro-axonal damage and the ongoing energetic dysregulation in multiple sclerosis (MS). Methods: Twenty-five patients with MS and 18 healthy controls (HC) underwent conventional magnetic resonance imaging (MRI) and DW-MRS. The apparent diffusion coefficient (ADC) of total N-acetyl-aspartate (tNAA) and creatine-phosphocreatine (tCr) were measured in the parietal normal-appearing white matter (NAWM) and in the thalamic grey matter (TGM). Multiple regressions were used to compare metabolite ADCs between groups and to explore clinical correlations. Results: In patients compared with HCs, we found a reduction in ADC(tNAA) in the TGM, reflecting functional and structural neuro-axonal damage, and in ADC(tCr) in both NAWM and TGM, possibly reflecting a reduction in energy supply in neurons and glial cells. Metabolite ADCs did not correlate with tissue atrophy, lesional volume or metabolite concentrations, while in TGM metabolite ADCs correlated with clinical scores. Conclusion: DW-MRS showed a reduction in tCr diffusivity in the normal-appearing brain of patients with MS, which might reflect a state of ongoing energy dysregulation affecting neurons and/or glial cells. Reversing this energy dysregulation before neuro-axonal degeneration arises may become a key objective in future neuroprotective strategies.
更多
查看译文
关键词
Multiple sclerosis,diffusion-weighted spectroscopy,energy dysregulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要