Nano-graphene oxide-manganese dioxide nanocomposites for overcoming tumor hypoxia and enhancing cancer radioisotope therapy.

NANOSCALE(2018)

引用 58|浏览16
暂无评分
摘要
While radiotherapy (RT) is commonly used in clinics for cancer treatment, the therapeutic efficiency is not satisfactory owing to the existence of the hypoxic tumor microenvironment which seriously affects the efficiency of RT. Herein, we design polyethylene glycol (PEG)-modified reduced nano-graphene oxide manganese dioxide (rGO-MnO2-PEG) nanocomposites to trigger oxygen generation from H2O2 to reduce the tumor hypoxic microenvironments. We use the radioisotope, I-131 labeled rGO-MnO2-PEG nanocomposites as therapeutic agents for in vivo tumor radioisotope therapy (RIT), achieving excellent tumor killing and further enhancing the therapeutic efficiency of RIT. More importantly, the dissolution of MnO2 under acidic conditions and the redox process during the catalytic pathway of H2O2 decomposition in the cellular microenvironment direct to the production of an enormous amount of Mn2+ which has been used as a contrast agent for magnetic resonance imaging (MRI). Our proposed work provides a strategy to trigger oxygen formation via an internal stimulus to enhance imaging-guided RIT efficiency.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要