SIRF: Quantitative in situ analysis of protein interactions at DNA replication forks (vol 217, pg 1, 2018)

JOURNAL OF CELL BIOLOGY(2018)

引用 69|浏览1
暂无评分
摘要
DNA replication reactions are central to diverse cellular processes including development, cancer etiology, drug treatment, and resistance. Many proteins and pathways exist to ensure DNA replication fidelity and protection of stalled or damaged replication forks. Consistently, mutations in proteins involved in DNA replication are implicated in diverse diseases that include defects during embryonic development and immunity, accelerated aging, increased inflammation, blood disease, and cancer. Thus, tools for efficient quantitative analysis of protein interactions at active and stalled replication forks are key for advanced and accurate biological understanding. Here we describe a sensitive single-cell-level assay system for the quantitative analysis of protein interactions with nascent DNA. Specifically, we achieve robust in situ analysis of protein interactions at DNA replication forks (SIRF) using proximity ligation coupled with 5'-ethylene-2'-deoxyuridine click chemistry suitable for multiparameter analysis in heterogeneous cell populations. We provide validation data for sensitivity, accuracy, proximity, and quantitation. Using SIRF, we obtained new insight on the regulation of pathway choice by 53BP1 at transiently stalled replication forks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要