Cholesterol accumulation by suppression of SMT1 leads to dwarfism and improved drought tolerance in herbaceous plants.

PLANT CELL AND ENVIRONMENT(2018)

引用 13|浏览2
暂无评分
摘要
Dwarfism and drought tolerance are 2 valuable traits in breeding of many crops. In this study, we report the novel physiological roles of cholesterol in regulation of plant growth and drought tolerance. Compared with the wild type, sterol-C24-methyltransferase 1 (SMT1) gene transcript was greatly reduced in a bermudagrass mutant with dwarfism and enhanced drought tolerance, accompanied with cholesterol accumulation, elevated transcript levels of a small group of genes including SAMDC, and increased concentrations of putrescine (Put), spermidine (Spd), and spermine (Spm). Knock-down of OsSMT1 expression by RNA interference resulted in similar phenotypic changes in transgenic rice. Moreover, exogenously applied cholesterol also led to elevated transcripts of a similar set of genes, higher levels of Put, Spd, and Spm, improved drought tolerance, and reduced plant height in both bermudagrass and rice. We revealed that it is Spm, but not Spd, that is responsible for the height reduction in bermudagrass and rice. In conclusion, we suggest that cholesterol induces expression of SAMDC and leads to dwarfism and elevated drought tolerance in plants as a result of the promoted Spd and Spm synthesis.
更多
查看译文
关键词
cholesterol,drought tolerance,plant growth,polyamine synthesis,sterol-C24-methyltransferase 1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要