Bioinformatic analysis of gene expression profiles of pituitary gonadotroph adenomas.

ONCOLOGY LETTERS(2018)

引用 10|浏览0
暂无评分
摘要
The aim of the present study was to identify genes, microRNAs (miRNAs/miRs) or pathways associated with the development of pituitary gonadotroph adenomas. The array data of GSE23207, which included 16 samples of multiple endocrine neoplasia-associated rat pituitary homozygous mutations and 5 pituitary tissue samples from healthy rats, were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were analyzed prior to functional enrichment analysis and protein-protein interaction (PPI) network construction. miRNAs associated with DEGs were predicted, and an miRNA-target regulatory network was constructed. A total of 187 upregulated and 370 downregulated DEGs were identified in the pituitary gonadotroph adenoma group compared with the healthy (control) group. Cyclin-dependent kinase (Cdk) 1 exhibited the highest degree in the PPI network. The upregulated DEGs were predominately enriched in 'neuroactive ligand-receptor interaction' pathway, and downregulated DEGs were mainly enriched in 'cell cycle'. The DEGs in module were predominately enriched in the 'cell cycle', whereas DEGs in module b and c were enriched in 'neuroactive ligand-receptor interaction'. miR-374, -153, -145 and -33 were identified as important miRNAs in the regulation of the DEGs. Cdkl, cyclin (Ccn) A2, Ccnb1, 'cell cycle' and 'neuroactive ligand-receptor interaction' pathways may serve important roles in the development of pituitary gonadotroph adenomas; Ccna2 and Ccnb1 may contribute to this development via an effect on the 'cell cycle' pathway. Furthermore, miR-374 and -145 may contribute to the development of pituitary gonadotroph adenomas via regulation of the expression of target genes.
更多
查看译文
关键词
pituitary gonadotroph adenomas,differentially expressed genes,protein-protein interaction network,modules,microRNA-target regulatory network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要