Insight into the structure and stability of Tc and Re DMSA complexes: A computational study

Journal of Molecular Graphics and Modelling(2017)

引用 11|浏览10
暂无评分
摘要
Meso-2,3-dimercaptosuccinic acid (DMSA) is used in nuclear medicine as ligand for preparation of diagnostic and therapy radiopharmaceuticals. DMSA has been the subject of numerous investigations during the past three decades and new and significant information of the chemistry and pharmacology of DMSA complexes have emerged. In comparison to other ligands, the structure of some DMSA complexes is unclear up today. The structures and applications of DMSA complexes are strictly dependent on the chemical conditions of their preparation, especially pH and components ratio. A computational study of M-DMSA (M=Tc, Re) complexes has been performed using density functional theory. Different isomers for M(V) and M(III) complexes were studied. The pH influence over ligand structures was taken into account and the solvent effect was evaluated using an implicit solvation model. The fully optimized complex syn-endo Re(V)-DMSA shows a geometry similar to the X-ray data and was used to validate the methodology. Moreover, new alternative structures for the renal agent 99mTc(III)-DMSA were proposed and computationally studied. For two complex structures, a larger stability respect to that proposed in the literature was obtained. Furthermore, Tc(V)-DMSA complexes are more stable than Tc(III)-DMSA proposed structures. In general, Re complexes are more stable than the corresponding Tc ones.
更多
查看译文
关键词
DFT calculation,DMSA,Re and Tc complexes,Radiopharmaceuticals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要