Relationships between electrical and mechanical dyssynchrony in patients with left bundle branch block and healthy controls

Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology(2018)

引用 18|浏览40
暂无评分
摘要
Background Abnormal electrical activation may cause dyssynchronous left ventricular (LV) contraction. In this study, we characterized and analyzed electrical and mechanical dyssynchrony in patient with left bundle branch block (LBBB) and healthy controls. Methods Myocardial perfusion imaging (MPI) data from 994 patients were analyzed. Forty-three patient fulfilled criteria for LBBB and 24 for controls. Electrical activation was characterized with vector electrocardiography (VECG) and LV function including mechanical dyssynchrony with ECG-gated MPI phase analysis. Results QRS duration (QRSd; r = 0.69, P < .001) and a few other VECG parameters correlated significantly with phase bandwidth (phaseBW) representing mechanical dyssynchrony. End-diastolic volume (EDV; r = 0.59, P < .001), ejection fraction and end-systolic volume correlated also with phaseBW. QRSd (β = 0.47, P < .001) and EDV (β = 0.36, P = .001) were independently associated with phaseBW explaining 55% of its variation. Sixty percent of patients with LBBB had significant mechanical dyssynchrony. Those patients had wider QRSd (159 vs 147 ms, P = .013) and larger EDV (144 vs 94 mL, P = .008) than those with synchronous LV contraction. Cut-off values for mechanical dyssynchrony seen in patients with LBBB were QRSd ≥ 165 ms and EDV ≥ 109 mL. Conclusions Despite obvious conduction abnormality, LBBB is not always accompanied by mechanical dyssynchrony. QRSd and EDV explained 55% of variation seen in phaseBW. These two parameters were statistically different between LBBB cases with and without mechanical dyssynchrony.
更多
查看译文
关键词
Gated SPECT,Left bundle branch block,Myocardial perfusion imaging,Phase analysis,SPECT,Vector electrocardiography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要