Scalable Super-Resolution Synthesis of Core-Vest Composites Assisted by Surface Plasmons.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2018)

引用 0|浏览7
暂无评分
摘要
The behavior of composite nanostructures depends on both size and elemental composition. Accordingly, concurrent control of size, shape, and composition of nanoparticles is key to tuning their functionality. In typical core-shell nanoparticles, the high degree of symmetry during shell formation results in fully encapsulated cores with severed access to the surroundings. We commingle light parameters (wavelength, intensity, and pulse duration) with the physical properties of nanoparticles (size, shape, and composition) to form hitherto unrealized core-vest composite nanostructures (CVNs). Unlike typical core-shells, the plasmonic core of the resulting CVNs selectively maintains physical access to its surrounding. Tunable variations in local temperature profiles >= 50 degrees C are plasmonically induced over starburst-shaped nanoparticles as small as 50-100 nm. These temperature variations result in CVNs where the shell coverage mirrors the temperature variations. The precision thus offered individually tailors access pathways of the core and the shell.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要