Potentiation of Antibiotic Activity by a Novel Cationic Peptide: Potency and Spectrum of Activity of SPR741.

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY(2017)

引用 112|浏览11
暂无评分
摘要
Novel approaches for the treatment of multidrug-resistant Gram-negative bacterial infections are urgently required. One approach is to potentiate the efficacy of existing antibiotics whose spectrum of activity is limited by the permeability barrier presented by the Gram-negative outer membrane. Cationic peptides derived from polymyxin B have been used to permeabilize the outer membrane, granting antibiotics that would otherwise be excluded access to their targets. We assessed the in vitro efficacies of combinations of SPR741 with conventional antibiotics against Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Of 35 antibiotics tested, the MICs of 8 of them were reduced 32- to 8,000-fold against E. coli and K. pneumoniae in the presence of SPR741. The eight antibiotics, azithromycin, clarithromycin, erythromycin, fusidic acid, mupirocin, retapamulin, rifampin, and telithromycin, had diverse targets and mechanisms of action. Against A. baumannii, similar potentiation was achieved with clarithromycin, erythromycin, fusidic acid, retapamulin, and rifampin. Susceptibility testing of the most effective antibiotic-SPR741 combinations was extended to 25 additional multidrug-resistant or clinical isolates of E. coli and K. pneumoniae and 17 additional A. baumannii isolates in order to rank the potentiated antibiotics. SPR741 was also able to potentiate antibiotics that are substrates of the AcrAB-TolC efflux pump in E. coli, effectively circumventing the contribution of this pump to intrinsic antibiotic resistance. These studies support the further development of SPR741 in combination with conventional antibiotics for the treatment of Gram-negative bacterial infections.
更多
查看译文
关键词
Gram-negative bacteria,microbiology,potentiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要