Erosion and deposition processes in surface granular flows.

PHYSICAL REVIEW E(2017)

引用 8|浏览8
暂无评分
摘要
We report on experiments aiming at characterizing erosion and deposition processes on a tilted granular bed. We investigate the existence of the neutral angle, that is, the critical angle at which erosion exactly balances accretion after the passage of a granular avalanche of a finite mass. Experiments show in particular that the neutral angle depends on both avalanche mass and shape but is rather insensitive to the bed length. This result strongly suggests that the effective friction between the static and mobile granular phases cannot be taken as an intrinsic property that is only material dependent but should be considered a flow-dependent property. Interestingly, for a given avalanche mass, the net erosion rate increases linearly with the angular deviation from the neutral angle. We also compare our data with the predictions of the erosion-deposition model introduced by Bouchaud, Cates, Ravi Prakash, and Edwards (BCRE) [J. Phys. I 4, 1283 (1994)]. We show that the predictions drawn from the modified version of the BCRE model proposed by Boutreux and de Gennes, in which the local erosion rate between the static and mobile phases is independent of the flow thickness, are in remarkable agreement with the experimental results.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要