Recombinant collagen scaffolds as substrates for human neural stem/progenitor cells.

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A(2018)

引用 31|浏览8
暂无评分
摘要
Adhesion to the microenvironment profoundly affects stem cell functions, including proliferation and differentiation, and understanding the interaction of stem cells with the microenvironment is important for controlling their behavior. In this study, we investigated the effects of the integrin binding epitopes GFOGER and IKVAV (natively present in collagen I and laminin, respectively) on human neural stem/progenitor cells (hNSPCs). To test the specificity of these epitopes, GFOGER or IKVAV were placed within the context of recombinant triple-helical collagen III engineered to be devoid of native integrin binding sites. HNSPCs adhered to collagen that presented GFOGER as the sole integrin-binding site, but not to IKVAV-containing collagen. For the GFOGER-containing collagens, antibodies against the 1 integrin subunit prevented cellular adhesion, antibodies against the 1 subunit reduced cell adhesion, and antibodies against 2 or 3 subunits had no significant effect. These results indicate that hNSPCs primarily interact with GFOGER through the 11 integrin heterodimer. These GFOGER-presenting collagen variants also supported differentiation of hNSPCs into neurons and astrocytes. Our findings show, for the first time, that hNSPCs can bind to the GFOGER sequence, and they provide motivation to develop hydrogels formed from recombinant collagen variants as a cell delivery scaffold. (c) 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1363-1372, 2018.
更多
查看译文
关键词
recombinant collagen,GFOGER,neural stem cells,integrin,IKVAV
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要