Genomic Identification and Functional Characterization of Essential Genes in Caenorhabditis elegans

G3-GENES GENOMES GENETICS(2018)

引用 16|浏览33
暂无评分
摘要
Using combined genetic mapping, Illumina sequencing, bioinformatics analyses, and experimental validation, we identified 60 essential genes from 104 lethal mutations in two genomic regions of Caenorhabditis elegans totaling ∼14 Mb on chromosome III(mid) and chromosome V(left). Five of the 60 genes had not previously been shown to have lethal phenotypes by RNA interference depletion. By analyzing the regions around the lethal missense mutations, we identified four putative new protein functional domains. Furthermore, functional characterization of the identified essential genes shows that most are enzymes, including helicases, tRNA synthetases, and kinases in addition to ribosomal proteins. Gene Ontology analysis indicated that essential genes often encode for enzymes that conduct nucleic acid binding activities during fundamental processes, such as intracellular DNA replication, transcription, and translation. Analysis of essential gene shows that they have fewer paralogs, encode proteins that are in protein interaction hubs, and are highly expressed relative to nonessential genes. All these essential gene traits in C. elegans are consistent with those of human disease genes. Most human orthologs (90%) of the essential genes in this study are related to human diseases. Therefore, functional characterization of essential genes underlines their importance as proxies for understanding the biological functions of human disease genes.
更多
查看译文
关键词
essential gene,lethal,genetic balancer,whole genome sequencing (WGS),functional characterization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要