Evaluation of 24 CYP2D6 Variants on the Metabolism of Nebivolol In Vitro.

DRUG METABOLISM AND DISPOSITION(2016)

引用 15|浏览11
暂无评分
摘要
CYP2D6 is an important cytochrome P450 (P450) enzyme that metabolizes approximately 25% of therapeutic drugs. Its genetic polymorphisms may significantly influence the pharmacokinetics and pharmacodynamics of clinically used drugs. Studying the effects of CYP2D6 on drug metabolism can help reduce adverse drug reactions and therapeutic failure to some extent. This study aimed to investigate the role of CYP2D6 in nebivolol metabolism by evaluating the effect of 24 CYP2D6 variants on the metabolism of nebivolol in vitro. CYP2D6 variants expressed by insect cell systems were incubated with 0.1-80 mu M nebivolol for 30 minutes at 37 degrees C and the reaction was terminated by cooling to -80 degrees C immediately. An ultra-performance liquid chromatography-tandem mass spectrometry system was used to analyze nebivolol and its metabolite 4-hydroxy nebivolol. Compared with CYP2D6.1, the intrinsic clearance values of most variants were significantly altered, and most of these variants exhibited either reduced V-max and/or increased K-m values. Variant R440C showed much higher intrinsic clearance than the wild type (219.08%). Five variants (CYP2D6.88, CYP2D6.89, R344Q, V342M, and D336N) exhibited no difference from the wild type. CYP2D6.92 and CYP2D6.96 displayed weak or no activity, whereas the intrinsic clearance values of the remaining 16 variants were significantly reduced to various degrees (ranging from 4.07% to 71%). As the first report of 24 CYP2D6 alleles for nebivolol metabolism, these results are valuable to interpreting in vivo studies and may also serve as a reference for rational clinical administration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要