Effect of surface functionalizations of multi-walled carbon nanotubes on neoplastic transformation potential in primary human lung epithelial cells.

NANOTOXICOLOGY(2017)

引用 18|浏览21
暂无评分
摘要
Functionalized multi-walled carbon nanotube (fMWCNT) development has been intensified to improve their surface activity for numerous applications, and potentially reduce toxic effects. Although MWCNT exposures are associated with lung tumorigenesis in vivo, adverse responses associated with exposure to different fMWCNTs in human lung epithelium are presently unknown. This study hypothesized that different plasma-coating functional groups determine MWCNT neoplastic transformation potential. Using our established model, human primary small airway epithelial cells (pSAECs) were continuously exposed for 8 and 12 weeks at 0.06 mu g/cm(2) to three-month aged as-prepared-(pMWCNT), carboxylated-(MW-COOH), and aminated-MWCNTs (MW-NHx). Ultrafine carbon black (UFCB) and crocidolite asbestos (ASB) served as particle controls. fMWCNTs were characterized during storage, and exposed cells were assessed for several established cancer cell hallmarks. Characterization analyses conducted at 0 and 2 months of aging detected a loss of surface functional groups over time due to atmospheric oxidation, with MW-NHx possessing less oxygen and greater lung surfactant binding affinity. Following 8 weeks of exposure, all fMWCNT-exposed cells exhibited significant increased proliferation compared to controls at 7 d post-treatment, while UFCB-and ASB-exposed cells did not differ significantly from controls. UFCB, pMWCNT, and MW-COOH exposure stimulated significant transient invasion behavior. Conversely, aged MW-NHx-exposed cells displayed moderate increases in soft agar colony formation and morphological transformation potential, while UFCB cells showed a minimal effect compared to all other treatments. In summary, surface properties of aged fMWCNTs can impact cell transformation events in vitro following continuous, occupationally relevant exposures.
更多
查看译文
关键词
Surface properties,aging effects,functionalization,multi-walled carbon nanotubes,cell transformation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要