A Ferroelectric Relaxor Polymer-Enhanced P-Type Wse2 Transistor

NANOSCALE(2018)

引用 31|浏览44
暂无评分
摘要
WSe2 has attracted extensive attention for p-FETs due to its air stability and high mobility. However, the Fermi level of WSe2 is close to the middle of the band gap, which will induce a high contact resistance with metals and thus limit the field effect mobility. In this case, a high work voltage is always required to achieve a large ON/OFF ratio. Herein, a stable WSe2 p-doping technique of coating using a ferroelectric relaxor polymer P(VDF-TrFE-CFE) is proposed. Unlike other doping methods, P(VDF-TrFE-CFE) not only can modify the Fermi level of WSe2 but can also act as a high-k gate dielectric in an FET. Dramatic enhancement of the field effect hole mobility from 27 to 170 cm(2) V-1 s(-1) on a six-layer WSe2 FET has been achieved. Moreover, an FET device based on bilayer WSe2 with P(VDF-TrFE-CFE) as the top gate dielectric is fabricated, which exhibits high p-type performance over a low top gate voltage range. Furthermore, low-temperature experiments reveal the influence of the phase transition of P(VDF-TrFE-CFE) on the channel carrier density and mobility. With a decrease in temperature, field effect hole mobility increases and approaches up to 900 cm(2) V-1 s(-1) at 200 K. The combination of the p-doping and gating with P(VDF-TrFE-CFE) provides a promising solution for obtaining high-performance p-FET with 2D semiconductors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要