A pyrene-modified cobalt salophen complex immobilized on multiwalled carbon nanotubes acting as a precursor for efficient electrocatalytic water oxidation.

DALTON TRANSACTIONS(2017)

引用 30|浏览1
暂无评分
摘要
Immobilization of earth-abundant water oxidation catalysts (WOCs) on carbon supports to produce functional electrodes for electrochemical water splitting is a crucial approach for future clean energy production. Herein we report the non-covalent immobilization of a pyrene-bearing cobalt(II) Schiff base complex (2) on the surface of multiwalled carbon nanotubes (MWCNTs) to form a hybrid anode for electrocatalytic water oxidation. The 2/MWCNT anode displayed excellent catalytic activity and durability in neutral aqueous solution, and a catalytic current density of 1.0 mA cm(-2) was achieved at 1.15 V vs. the normal hydrogen electrode (NHE), corresponding to a low overpotential of 330 mV. A Tafel slope of 96 mV per decade was obtained. The Faradaic efficiency of oxygen evolution was more than 90% by bulk electrolysis measurement. After bulk electrolysis, the hybrid anode characterization using X-ray photoelectron spectroscopy (XPS) confirmed that complex 2 decomposed to form heterogeneous cobalt hydroxides and the cobalt hydroxides should be true catalytic active species, which are responsible for electrocatalytic oxygen evolution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要