Intrinsic Ferromagnetism And Quantum Anomalous Hall Effect In A Cobr2 Monolayer

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2017)

引用 35|浏览2
暂无评分
摘要
The electronic, magnetic, and topological properties of a CoBr2 monolayer are studied in the framework of density-functional theory (DFT) combined with tight-binding (TB) modeling in terms of the Wannier basis. Our DFT investigation and Monte Carlo simulation show that there exists intrinsic two-dimensional ferromagnetism in the CoBr2 monolayer, thanks to the large out-of-plane magnetocrystalline anisotropic energy. Our further study indicates that the spin-orbit coupling makes it become a topologically non-trivial insulator with a quantum anomalous Hall effect and topological Chern number l = 4 and its edge states can be manipulated by changing the width of its nanoribbons and applying strains. The CoBr2 monolayer can be exfoliated from the layered CoBr2 bulk material because its exfoliation energy is between those of graphene and the MoS2 monolayer and it is dynamically stable. These results make us believe that the CoBr2 monolayer can make a promising spintronic material for future high-performance devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要