Thermoelectric performance enhancement of Mg2Sn based solid solutions by band convergence and phonon scattering via Pb and Si/Ge substitution for Sn.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2016)

引用 37|浏览7
暂无评分
摘要
In this study, the thermoelectric properties of Mg2Sn0.98-xPbxSb0.02 were first studied, and then Mg2Sn0.93-xSixPb0.05Sb0.02 and Mg2Sn0.93-xGexPb0.05Sb0.02 were accordingly investigated. The results showed that the formation of Mg2Sn0.98-xPbxSb0.02 solid solutions effectively reduced the lattice thermal conductivity of Mg2Sn. The room temperature lattice thermal conductivity of Mg2Sn0.98Sb0.02 is similar to 5.2 W m(-1) K-1 but only similar to 2.5 W m(-1) K-1 for Mg2Sn0.73Pb0.25Sb0.02, a reduction of similar to 52%. Further alloying Mg2Sn0.98-xPbxSb0.02 with Mg2Si or Mg2Ge to form Mg2Sn0.93-xSixPb0.05Sb0.02 or Mg2Sn0.93-xGexPb0.05Sb0.02 reduced the lattice thermal conductivity significantly due to enhanced phonon scattering by point defects as well as nanoparticles. Moreover, bipolar thermal conductivities were suppressed due to the larger bandgap of Mg2Si and Mg2Ge than Mg2Sn. Furthermore, similar to the pseudo-binary Mg2Sn-Mg2Si and Mg2Sn-Mg2Ge systems, band convergence was also observed in pseudo-ternary Mg2Sn0.93-xSixPb0.05Sb0.02 and Mg2Sn0.93-xGexPb0.05Sb0.02 materials. The convergence of conduction bands led to higher PFs at lower temperatures for Mg2Sn0.93-xSixPb0.05Sb0.02 and Mg2Sn0.93-xGexPb0.05Sb0.02 materials. As a result, higher peak ZTs of similar to 1.3 for Mg2Sn0.63Si0.3Pb0.05Sb0.02 and similar to 1.2 for Mg2Sn0.68Ge0.25Pb0.05Sb0.02 were achieved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要