Linearly polarized Q-switched ceramic laser made with anisotropic nanostructured thin films.

APPLIED OPTICS(2016)

引用 3|浏览3
暂无评分
摘要
A polarizing laser mirror was made of an alternating sequence of low and high refractive index layers of titanium oxide using glancing angle deposition (GLAD). Large refractive index contrast and large birefringence, reaching 0.5 and 0.1, respectively, could be obtained from one single raw material by changing the deposition conditions. The laser mirror could withstand a train of 2.7 ns, single-mode pulses at 680 Hz, lambda = 1030 nm, and peak power density of 670 MW/cm(2) when used as an output coupler of a passively Q-switched (Yb-0.1 Y-0.9)(3)Al5O12 ceramic laser. The polarization extinction ratio was found to be better than 30 dB both in continuous-wave and pulsed regimes. These results indicate that polarizing laser mirrors made from nanostructured thin films with GLAD, in addition to being simple to fabricate, can withstand high pulse energy density. (C) 2016 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要